由于比synchronized灵活,粒度可操作,使用Lock的api更适合业务的实际使用。
ReentrantLock的lock方法
三个线程一起走到共享代码块处:调用lock.lock();
线程1,抢占到资源,源码执行:
//将state设置为1,state可以理解为加锁的个数
if (compareAndSetState(0, 1))
setExclusiveOwnerThread(Thread.currentThread());
线程2、和线程3,发现期望值是0和当前值1不相等,设置1返回false走:
acquire(1);//如果获取失败,会阻塞,看实现
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
线程2在尝试了一次获取不到锁后,将调用addwaiter方法,具体逻辑如图:
线程3在尝试了一次获取不到锁后,将调用addwaiter方法,具体逻辑如图:
具体代码是:
private Node addWaiter(Node mode) {
Node node = new Node(Thread.currentThread(), mode);
// Try the fast path of enq; backup to full enq on failure
Node pred = tail;
if (pred != null) {
node.prev = pred;
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
enq(node);
return node;
}
private Node enq(final Node node) {
for (;;) {
Node t = tail;
if (t == null) { // Must initialize
if (compareAndSetHead(new Node()))
tail = head;
} else {
node.prev = t;
if (compareAndSetTail(t, node)) {
t.next = node;
return t;
}
}
}
}
线程2,3加入队列后还有进行阻塞(否则它还是不会停止下来):
代码是:
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())//线程2,3都会阻塞到此处
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
int ws = pred.waitStatus;
if (ws == Node.SIGNAL)
return true;//线程3到此处返回,因为线程2是signal
if (ws > 0) {
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);//如果某个线程是cancel状态移除等待队列
pred.next = node;
} else {
compareAndSetWaitStatus(pred, ws, Node.SIGNAL);//线程2到此处时将head节点的wait设置为siganl
}
return false;
}
private final boolean parkAndCheckInterrupt() {
LockSupport.park(this);//阻塞线程到此处
return Thread.interrupted();
}
ReentrantLock的unlock方法
释放锁代码如下:
public final boolean release(int arg) {
if (tryRelease(arg)) {//线程到此处释放成功
Node h = head;
if (h != null && h.waitStatus != 0)//由于head是空的node不等于null,且waitstatus=signal
unparkSuccessor(h);//
return true;
}
return false;
}
protected final boolean tryRelease(int releases) {
int c = getState() - releases;
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
boolean free = false;
if (c == 0) {
free = true;
setExclusiveOwnerThread(null);
}
setState(c);
return free;
}
根据上述情况会走以下唤醒一个head后面的node:
private void unparkSuccessor(Node node) {
int ws = node.waitStatus;
if (ws < 0)
compareAndSetWaitStatus(node, ws, 0);
Node s = node.next;
if (s == null || s.waitStatus > 0) {
s = null;
for (Node t = tail; t != null && t != node; t = t.prev)
if (t.waitStatus <= 0)
s = t;
}
if (s != null)
LockSupport.unpark(s.thread);//thread2走到这里就会唤醒lock中LockSupport.park(this)处
}
LockSupport.unpark(s.thread)后回到阻塞处
唤醒阻塞后,再次自旋获取锁:
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())//回到此处唤醒后
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
由于刚唤醒,interrupted为true,接着执行:
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();//由于之前使用locksupport.park阻塞过,需要设置该线程的中断标志位复位
}
static void selfInterrupt() {
Thread.currentThread().interrupt();
}
具体实验案例:
public class App
{
public static void main( String[] args ) throws Exception {
t2();
}
public synchronized static void t2() throws Exception
{
Thread t = new Thread(new Runnable()
{
private int count = 0;
@Override
public void run()
{
long start = System.currentTimeMillis();
long end = 0;
while ((end - start) <= 1000)
{
count++;
end = System.currentTimeMillis();
}
System.out.println("after 1 second.count=" + count);
//等待或许许可
LockSupport.park();
System.out.println("thread over." + Thread.currentThread().isInterrupted());
}
});
t.start();
t.isInterrupted();
Thread.sleep(2000);
/* t.interrupt(); 此处是将 Thread.currentThread().isInterrupted()的值设为true*/
LockSupport.unpark(t);
// 中断线程
System.out.println("main over");
}
}
Fair与NonFair的区别
非公平锁直接尝试获取锁
//非公平锁
final void lock() {
if (compareAndSetState(0, 1))
setExclusiveOwnerThread(Thread.currentThread());
else
acquire(1);
}
//公平锁
final void lock() {
acquire(1);
}
公平锁会先判断一下head之后有无其他等待节点
protected final boolean tryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (!hasQueuedPredecessors() &&
compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
}
public final boolean hasQueuedPredecessors() {
// The correctness of this depends on head being initialized
// before tail and on head.next being accurate if the current
// thread is first in queue.
Node t = tail; // Read fields in reverse initialization order
Node h = head;
Node s;
return h != t &&
((s = h.next) == null || s.thread != Thread.currentThread());
}